Rational Zero Test Homework

1.)
$$y = x^3 + 7x^2 + 7x - 15$$

number of complex roots:

number of possible positive roots:

Is 1 a root?

Is –1 a root?

number of possible negative roots:

possible roots:

 $\frac{\text{factors of}}{\text{factors of}}$

= -

				 	_	 	_			
								_		
					_					
					_					

2.) $y = x^3 - 7x - 6$

number of complex roots:

number of possible positive roots:

number of possible negative roots:

Is 1 a root?

Is –1 a root?

possible roots: $\frac{\text{factors of}}{\text{factors of}} = -----=$

_																			
-	-										-								
_	_	_	-		_		-	-		_	_	-	-		_	-	-	-	-
_																			
_																			
_																			
_			_	_		_	_	_	_			_	_	_		_	_	_	-
-												-							
-	-	-	-			_	-	-			-	-	-			-	-	-	-
_																			
						_	_												

Name _____

- =

3.) $y = x^4 + 2x^3 - 9x^2 - 2x + 8$

number of complex roots:

number of possible positive roots:

number of possible negative roots:

Is 1 a root?

Is -1 a root?

possible roots: $\frac{\text{factors of}}{\text{factors of}} = -----=$

4.) $y = 6x^3 + 19x^2 + 2x - 3$

number of complex roots:

number of possible positive roots:

Is 1 a root?

number of possible negative roots:

Is –1 a root?

possible roots:	factors of = =

